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1. INTRODUCTION

The exact statement of hypotheses and results are given in the following
sections. Here, we will discuss the problems in general terms. The class

of differential equations which will occupy our attention is of the form

(l-l) u’ = F(u) ) t)

where u 1is an N-vector, € a small parameter and t +the independent vari-
able. The function F(u, e t) is assumed to be periodic in t of period

T> 0 for all u and ¢ and the unperturbed equation

(1.2) z” =F(z, 0, t)

is assumed to have the property that all its solutions are periodic of per-
iod T.

If u(x, e, t) is the solution of (1.1) with initial condition wu(x, ¢, 0) = x,

then we define the transformation h(x, e) with the property h(x, 0) = x by

(1.3) n(x, ) =u(x, & T).

Since F(u, e, t) is périodic in t of period T, it follows that the
iterates of the transformation h(x, e) yield a sequence of points which are
the values of u(x, e, t) at positive integral multiples of T. A fixed point
of h(x, e) corresponds to a periodic solution of (1.1) of period T and a
fixed point of the iterate h<n)(x, g) corresponds to a solution of period
nT (not necessarily the minimal period). 1In fact, the transformation h(x, )
determines virtually all the important qualitative characteristics of the
solutions to (1.1).



An autonomous system of the form

(1.4) v =g(v, &), glv, 0)=0

with the property that the solution v(x, €, t), with initial condition

v(x, € 0) = x, satisfies v(x, &, T) = h(x, ¢) will be called a strobo-
scopic differential equation of the system (1.1).. Thus, the solutions of
(1.1) and (1.4) with the same initial conditions at t = O coincide when

t 1is an integral multiple of T. The principal problem of our investigation
is the determination of a stroboscopic differential equation of (l:l) and a

transformation ¢(y, e, t) with the properties

¢(Y: €, O) = ¥
(1-5)
¢(Y) g, t+T) = @(Y: €, t) ’

such that if v(x, €, t) is a solution to (1.4) then

u = @(V(X, €, t); €, t)
is a solution to (1.1).

The "stroboscopic method" was invented by N. Minorsky, see [1, pp. 390-4157,
in collaboration with M. Schiffer. Briefly, it takes the following form.
ILet (1.1) be of the type

(1.6) u’ = ef(u, g t) .
Then, in place of (1.4), the averaged equation
vi= ¢ F(v)
(1.7) T

Fv) = % j £(u, 0, t)at
0



is used. Questions of the existence and stability of periodic solutions with
period T to (1.6) can then be formulated in terms of the behavior of the
solutions to (1.7). In our treatment here, we seek convergence of a series
in which the first term is the above averaged equation. Yorinaga [2] and
Urabe [3] have elaborqted on Minorsky's method and have thereby placed it on

a more rigorous footing.

Sharshanov 4], [5] and Urabe [3], [6], [7] have considered these problems
without dependence on ¢. In [4], [5], [6] and [71, they start with the
transformation h(x) given. In [3] the starting point is a periodic non-
autonomous system. They give sufficient conditions for the existence of an
analytic autonomous system. By extending our system to a system of one
higher dimension we can transform our problem into their setting. But their

hypotheses exclude the function F and h which satisfy our conditiomns.
£ (
+ \

of the identity transformation but this case is specifically excluded in

their hypotheses.

In section 2, we give the formal computation of the stroboscopic differential
equation and the transformation m(y; e, t). In section 3, certain special
systems are investigated for which we not only give exact convergence theorems
for the stroboscopic representation of the solutions but also more specific
information regarding the form and qualitative behavior of the solutions. 1In
section 4, the formal part of the general theory is developed and in section Y

a convergence theorem is stated and proved.

During the early stages of the investigation, some casual discussion of per-
turbation theory with a physicist colleague resulted in the resolution of a
mathematical gquestion arising in Quantum Chemistry. Although the subject

matter of the subsequent publication is peripheral to the contract study, an
acknowledgement was included and a reprint of the paper is reproduced as an

Appendix to this report.




2. STROBOSCOPIC REPRESENTATION

We rewrite (1.1) with N-vector y in place of u:

(2'1) y' o= F(Y) ) t) .

Our interest is in real solutions to (2.1) and consequently we always assume
that F 1is real when y, ¢ and t are real. Illowever, we introduce assump-
tions over complex domains in y and ¢ in order to utilize analytic expan-

sion theorems. Let EN be N-dimensional (real) Euclidean space and let

CN be N-dimensional complex vector space. Thus CN is homeomorphlic to
E2N. Let H be an open region of CN+l which includes all points (xl, ey
Xy 0) where the x, are real. We assume that T(y, e, t) is continuous
in the (N+2) variables (y, e, t) for all (y, e) € I and t ¢ o Al so,

L

for each fixed t, t € E, we assume +that F 1is analytic in (y, ¢) over I

These conditions imply the local existence and uniqueness of the solution
y(x, €, t) with initial condition y(x, €, 0) = x, (x, €) € H. For some

fixed T > O we assume

1
(2.2) Fly, e, t+T) =F(y, &, t), (v, €) e H, t € E.

Finally, we assume that the unperturbed equation

(2.3) z' =F(z, 0, t)
has the property that all solutions =z(x, t), with z(x, 0) = x,
x € Hy = {x ¢ CNI(x, 0) € H} are periodic of period T, i.e.

(2. 4) z(x, t+T) = z(x, t), x € Hy, t ¢ B

In particular, z(x, t) € Hy for xeHy te o



A problem of interest by itself is to find additional assumptions which may
be imposed on (2.3) directly in order to insure that all solutions are peri-
odic of period T. If we assume that each solution z(x, t) may be contin-
ued to all +t, then one such condition is the existence of a real constant ¢
such that

F(z, 0, c+t) = - F(z, 0, c-t)

for all 2z € HO’ t € El. This is a generalization of a known result for
linear equations, see Epstein [8, p. 691]. To prove this assertion, let
z(t) be any solution to (2.3), then z(2c-t) is also a solution and it has
the same value as z(t) at t = c. Consequently, by uniqueness,

z(t) = z(2c-t) or z(c-t) = z(c+t). On the other hand, because of (2.2),

a(t)

z(t+T) is also a solution and

T T T
ale - 5) = z(c + §) = z(c - 5)
and again, by uniqueness, q(t) = z(t) = z(t+T). Another condition for all

solutions to be periodic will be given in Section 3.

The condition (2.4) enables us to perform a reduction of (2.1). From the
analytic expansion theorem, see [9, p. 367, =z(x, t) is continuous in (x, t)
over HO X El and for each t, t ¢ El, z(x, t) 1is analytic in x over Ho.
Each element of the Jacobian matrix

3(x, ) = 200

has these same properties; the continuity following from Cauchy's integral
formula for a derivative. By (2.3), J(x, t) satisfies a linear matrix

differential equation in the independent variable +t and J(x, 0), x ¢ }%,

is the identity matrix. Consequently, J(x, t) 1is non-singular for all
X € HO’ t e El (see Bellman [10, p. 10]). There exists a countable collection

of open sets G, contained in CN such that HO =U Gn and such that the

- — n -~
closure G, 1is compact and Gp & Hy. Due to (2.4), the set A = z(Gn, El)




is compact and A.n c H Consequently, there exist Gn > 0 such that if

o
8, = fe | [e] < 6n} then A, x 8, c H. Now let

(2.5) G=U (G, x8))

where G 1is then an open subset of H and Hy X {0} € G . Consider the

function
£lu, € t) = 3 (u, t) [Flz(u, t), & ) - F(z (u, t), 0, t)]

which has the properties that f(u, ¢ t) is continuous in. (u, e, t) for

all (u, ¢) € G and t € E'  and for each t, f is analytic in (u, ¢) over G.
The differential equation
(2'6> u' = f(u) € t)

has all the properties imposed on (2.1), where [ 1is replaced by the sub-

region G, and in addition
(2.7) f(u, 0, t) =0, ue H, t € E'

If u(x, g t) is the solution of (2.6) with the initial condition
u(x, e 0) =x, (x, ¢) € G, then y = z(u(x, e, t), t) is the solution to

(2.1) with the same initial condition.

Let S8 Dbe an arbitrary compact set in HO. Then, due to (2.7) and the
periodicity condition of f(u, ¢, t) in t, we conclude that for |e| suffi-
ciently small the solutions u(x, g t) with x € S may be extended to an
interval in t which includes [0, T]. Consequently, by the analytic expan-
sion theorem, the transformation function h(x, e) = u(x, ¢, T) is defined
and analytic over an open subset V of G and such that HO x {0} c V. The
transformation h(x, ¢) has the property that h(x, 0) = x for x € My Tt
may be observed that the transformation function y(x, e, T) of (2.1) is
identical to h(x, ¢) over V wsince y(x, €, T) = z(u(x, €, T), T) =

z(u(x, e, T), 0) = u(x, €, T).



We now define the stroboscopic representation of the solutions to (2.6).
Suppose there exist N-vector valued functions g(x, e), o(x, e, t). where
X 1is an N-vector, with the following properties. There exists an open

subset Go of G such that Ho x {0} c G

o and g(x, ¢) is analytic in

(x, ) over Gye  Also

(2.8) g(x, 0) =0, xce H, -
. d . .
The functions ¢(x, €, t) and 5% are continuous in (x, g, t) for (x,¢) € G

0
and t ¢ El and for each t, t € E-, these functions are analytic in (x, g)

over GO. In addition
(2.9) o(x, e t+T) = olx, & t) , (%, €) € Gy, t € oo
(2.10) o(x, €, 0) = x > (x, €) € Gy
(2.11) olx, 0, t) = x , (x, t) e Hy X o

Finally, if v(x, e, t) 1is the solution to the autonomous equation

(2.12) v = g(v, &)
with initial condition v(x, g, 0) = x, (x, e) € Gy, then
(2.13) u(x, e t) = olvix, & t)e, t)

is the solution of (2.6) with the same initial condition.

As in the discussion of the transformation function h(x, ¢) for (2.6), the
condition (2.8) implies that v(x, e, T) is defined and analytic in (x, ¢)
over some open subset VO of GO and such that HO x {0} VO. The above

conditions then imply that h(x,e) = v(x, & T) over V, and consequently
(2.12) is a stroboscopic differential equation of (2.6) and therefore also

of (2.1).

We will show that if there exists a stroboscopic representation of the solu-

tions of (2.6), as defined above, then the functions g(x, ¢) and o(x, g, t)



are uniquely determined. We do this by exhibiting an explicit calculation of

these fuiictions in terms of f(u, e, t).

Substitute (2.13) into (2.6), denoting the Jacobian matrix of o(x, &, t)
with respect to x by Py (x, €, t), we have '

(2'1)4’) CP:l (VJ €, t) g(VJ E) + %(tQ (V; €, t) = f((P<V) £, t): €, t)

We now define open subsets Gi(i =1, 2, 3) of GO such that GO :>C1 > 02 D,
: 2
and G

3 contains Ho x {0}. Introducing the dummy variable y, we will show
that

(2.15) @y () & ) gl ©) + 2 (v, & t) = £(oly, & 1), € t)

is an identity for all t ¢ B and all (v, €) € GB' For each t, t ¢ El, the
left-hand side of (2.15) is analytic in (y, €) over GO. Due to the proper-
ties of o(y, €, t), there exists an open subset Cl of GO such that

(p(y, & t), €) € G for all (y, €) € G, and t e o Consequently, for

each t, t ¢ El, both sides of (2.15) are analytic in (y, &) over G . The

existence of G2 and GB’ defined below, follows from arguments similar to
those applied to h(x, e€) for equation (2.6). Let G, be an open subset of
Gy, such that if (x, €) e Gy, then v(x, €, t) may be extended to all + in

[0, T] and (v(x, & t), €) ¢ G, for all t e [0, T]. Let (i be an open
subset of G2,
to all t ‘in [-T, T] and (v(x, &, t), €) ¢ G,y
let (y, €) € G3 and t,€ [0, T]. If x = v(y, e, —to), then (x, g) ¢ Gy-

We apply (2.14) to the solution v(x, e, t) and observe that v(x, e, to) =y

such that if (x, €) € GB’ then v(x, e, t) may be extended
for all +t ¢ [-T, T]. Now

since the equation (2.12) is autonomous. Thus (2.15) is an identity for
(v, €) € Gy and t ¢ [0, T]. But since each side of (2.15) is periodic in *

of period T, this result may be extended to all t € El.

From the properties of f, g and ¢ we have

[ee]

(2.16) 2y, & t) = ) & (n t)

n=1



(o]

gy, &) = ) & e )

n=1

(2.17) \ w

oly, e t) =y + Z & cpn(y; t)
n=

,

where the. fn and ¢, are periodic in t of period T and qh(y, 0) = 0,
n=1, 2, 3 ...

In order to expand the right-hand side of (2.15) as a power series in ¢ ,
we need certain preliminary expansion formulas for anglytic functions. Some
of these will be used in later sections. Let x, M be N-vectors with com-
= (x(l), cen, x(N)), N = (n(l), cee, n(N)) and let f(x) be a

N-vector wvalued function of x. A known result is

ponents x

[oe]

(2.18) £x+1) = E: %1 fk(x, )
k=0
where N
) (1,) (ix) 3 r(x) k = 1,2,...
fk(x) T]) = z n e M ax(il). ax(ik)
ig,eeeai =l "
(2.19)
£o(x, M) = £(x)
\
Now let 1 = .Ej anJ 5 nj (ﬂgl), e ,ﬂgN))



Then

N ©
. (il) . (ik) 5kf( )
f (x = }; Jd 9, .o }; I, WX -
k( b T]) . [ T]J € T]J a (1]_) a (lD
. Vel = J= J'= X s 0 0 OX
R R ™
N o . . . k
) >~ E Lk ﬂ(11) ,n(ik) 3°F (%)
L . I I 3 ) (i)
ll*""lk—l Jl,...,Jk=l
_ Ji+. . +y
- E fk(xJ .njl) ) Ian)
Jyreeerdy=
where
N .
£ (o o= Y (1)) ()
kYoot gk T J e i i
i L R Y
This yields
(o] [2e]
(2'20) fk(x; X EJT'J-) = X Ev X fk(x) 'nJl) ) 'an)
.=l = | o i =
J v=k Jl+ +Jk v
for k=1, 2, 3 ... . Throughout this paper a summation symbol of the type
2_ will be used to denote a summation over all k-vectors (jl,...,jk)
Jl+...+Jk=V
whose elements are positive integers such that jl + ...+ jk = V.

10



From (2.18) and (2.20) we have

o

(2.21) f(x + X

[es]
eIn,) = £(x) + Y ¢
,j=1 =1

Consider the N-vector valued functions

h(x, €) = x +

!
=

(2.22)

.e(x: 5) =

|
~
+

and En(x)
o = (Zr(ll)’ ceey e, zr(lN)). Then

[eo]

n(e(x, €), €) = x + 2 %4 (x) +

where hn(x) are analytic

n=1
From (2.21), we have
J -
b G ) elag(x) = n (o)
J=1
)
v=1 k=1
where
N
0 O 23,000, woes 25, G0) = Y
i,

PRENCHE TR, N

v
z; 1
k!
k=1 Jl+...+3k=v

of the form

o]

Y e ()
n=1

©

z‘ En,@ﬂ(X)

n=1

YRy s gy (0, ety ()

jl+...+jk=v
: i) 3
(11) ( k hn(x)
i —fjl (X)'..Ejk 6o Bx(il)...Bx(ik)
,k—

11



Let

an (x) = .

ul\¢1<

% X h.nk(x, le(x)’ L ZJK(X))
+ jk=v

then, after some manipulation, we obtain

(2.23) n(a(x, €), &) =x+ ) & [4.(x) + b (x)]
n=1

- n-1
n
+§ € X Ln-v,v(x)
n=2 v=1

Returning to (2.15), it is seen from (2.16) and (2.17) that for fixed + the
functions 4&(y, €) = o(y, e, t) and h(y, €) =y + £(y, €, t) have the same
form as (2.22). Hence h(gly, & t), £) can be obtained from (2.2%) and
then f(oly, € t), &, t) = n( oly, & t), €) - o(y, &, t). This yields

[eo]

(2.24) 1oy, & t), & 8) =) Er (v, 8) v Yy &) gy, )
n=2 =1

n=1
where
o1 - (1) () 3 (v¢)
(2.25) ‘§mv(y’t) =§ k! E E (-le (Y;t)...cpJ.I{(y,t)aGl) N (ik)
k=1 jl+...+jk=v il,...,ik= y o N

12



We now expand the left-hand side of (2.15) and for the first term we have

@ [oe)

[I + X en(pn,l(y, t)] ? emgm(Y)

n=1 =1

I

(2'26) q;l(Y: €, t) g(Y: E)

(<] (=] n-1

ZEngn(Y) + z e Z cpv,l(y, t)gn_v(y)

n=1 n=2 v=1l

Substituting (2.24) and (2.26) into (2.15) we get

qu
5= ot) = £,(v, ) - g (¥),

th
Y (Y;#)

1l

n-1
RCARIIDNE N 2
v=1

n-1
5, () - ) @, v t) g ()
v=1 .

n=2, 3, )'l')

The condition that vy, t) is periodic in t of period T uniquely deter-
? q

mines gn(y) and we have

T
l 'ad
0
e (v) =% | B (v, that, n =2, 3,
0

15



where
n-1

B (v, 8) = £ (y, t) + )
v=1

Qn_v,v(y,o t)

n-1

- , t .
E CPV,l(y ) e, )
v=1

Finally, the initial condition qh(y, 0) = O uniquely determines @, (y, t)

and we have

t
oy, 8) = |10y, ) - a()] ar
0
(2.28) 4
o, (v, t) = | [B.(y, ) - g (3)]ar, n=2 3,
0

It may be observed that if we define g, and @ by (2.27) and (2.28), then
from the assumptions on f(y, €, t) the function gn(y) is analytic in y
over HO and, for each t , qh(y, t) is analytic in y over HO. Also

qh ani its derivative with respect to t are continuous in (y, t) over

HO X E .

In an applied problem yielding (2.1), the solutions =z(x, t) of (2.3) are
quite likely known so that (2.6) is explicitly obtained. One then computes
¢i’ . ¢5 and 815 cvvs 841 from (2.27) and (2.28), i.e. the g's are com-
puted to one higher order than the ¢'s. This is due to the fact that

accuracy is more important in (2.12), which in general has non-periodic solu-
tions, than in the expansion of ¢ in (2.17) where the ¢, are periodic in t.
One then solves (2.12) on a computing machine, where a large step size is
feasible due to (2.8) and the fact that (2.12) is autonomous. For long time
intervals one would expect greater accuracy by this method than one would ob-
tain by solving (2.1) or even (2.6) on the machine since "short" period oscilla-

ations occur due to the presence of +t.

1k



5. SPECIAL EQUATIONS

In this section we will consider three special classes of equations of the

form (2.6) and their stroboscopic representations.

Let A(t) be a real N x N matrix continuous and periodic in t of period

T > 0. Consider the vector-matrix equation

N+1

(3.1) u' =eAlt)u , (w, e)ec=CcC

From (2.27) and (2.28), it follows by induction that gn(y) and mn(y, t)
have the form gn(y) = Dny and ¢h(y, t) = Qn(t)y where D, 1is a constant
matrix and Qn(t) is a periodic matrix in % of period T and has a con-

tinuous derivative. The D, and Q,(t) are given by

T
D, = % j A(t) at
(3.2) ©
’T n-1
=3 [ [0 8- T e, e
0 v=1
n=2, 3,
and -F
o (t) = | ra(m) -pyar
0
(3.3)
E n-1
Qn(t) = J |_A(T)C’)n--l(ﬂ B Eij(T) Dn-v-Dn ]ar
0 v=1
n=2,3, .

15



It is not obvious from the calculations (3.2) and (3.3) that the series

ely, e) = X €Dy

n=1
(3.4) @
oy, & &) =y + ) e (ty

n=1L

converge for ¢ # 0. However, we will now show that this is the case.

From the theory of linear equations (see [10, Chapter 1]), the solutions
u(x, €, t)of (3.1) exist for all t and have the form

(3'5) u(x: €, t) = Y(E) t)x ’ Y(E} O) =T

where Y(e, t) is an N x N matrix. From the analytic expansion theorem,
for each t, t € EX, Y(e, t) is analytic in e over ¢t In particular,

since Y(0, t) = I, we have

[ee)
n 1
(3.6) Y(e, T) = I + ehA, , e€C
n=1
where Ap (n =1, 2, 3...) is a constant matrix. For the norm of an N x N
matrix A = [a,] with complex elements, we choose ||A]] = N max [ajs|. Then

a8l < [lall [1B]|-

The logarithm of a matrix and the exponential matrix are defined by power

series expansions. In particular, for a matrix of the form I + B we use

\v]
N

B

B
log (I +B) = B - 5 oty

16



There exists § > O such that

[o0]

I ) A <1

n=1

for all e e O with |e] < 6. The matrix D(e) given by

[ee]

1
(3.7) D(e) = 7 log (1+ ) &)
n=1
is uniquely defined and analytic in & over Sg = fe € Cl l Iel < 6 }. Also,

D(0) 1is the zero matrix and D(g) is real for real € € Sg- We then have,

by (3.7) and (3.6),

(3‘8) Y(E) T) = éD(E)T ) € € Sé
and also the identity
1 1
(3.9) Y(e, t+T) = Y(e, t) Y(e, T) , (e, t) € ¢ x E

which follows in the linear theory from the periodicity of A(t). Now define

g(y, e) = D(e) vy,
(3.10)

o (v, & t) = Y(e, ’c)e'D(E)JC v -

which for each t, t ¢ El, are analytic in (y, &) over CN X 85' The function

3

@ satisfies (2.9), (2.10) and (2.11) where the property (2.9) follows from

(3.8 and (3.9). Now let v(x, €, t) = eD(E)tx be the solution of +v' = D(e) v,

then
u(x; €, t) = (P*(V(x) E)t) y & t)

is the solution (3.5) of (3.1). Thus, the functions in (3.10) satisfy all

the properties for the stroboscopic representation of the solutions to (3.1)

17



and therefore the corresponding functions in (3.10) and (3.4) must be identi-
cal for all t ¢ E- and all (y, e) € Gy = N X Sé'
We observe that even for linear equations there may be restriction on lel
for the stroboscopic representation. The Floguet theory states that

the solutions of

u' = Al(t)u, A(t + T) = A(t)

may always be expressed in the form
Dt
u(x, t) = Q(t)e x , Q) =1

where Q(t) is periodic of period T and D is a constant matrix. DBut it
is not always possible to choosé D to be a real matrix (see [9, p. 81])
and consequently, in this case, there must be a restriction on |e| for the

stroboscopic representations of the solutions to (3.1).

Next we consider equations of the form

(3.11) u' = ¢ £(t) F(u)

where f(t) is a continuous, periodic scalar function of t of period T > O

and F(u) is an N-vector valued function analytic over an open set HO C CN.

Thus, for each t, the right-hand side of (3.11) is analytic in (u, ¢) over

G = HO X Cl. Let w(x, t) be the solution of the initial value problem

(3.12) w' =F(w), w(x, 0) =x.

It is known that there exist N-vector valued functions Hh(x) (n=1,2, ...)
which are analytic on HO, and for each Xy € HO there exists a(xo) > 0,
and p(xo) > 0 such that

(3.13) wix, 8) = x+ ) t°H (x)
n=1
converges for ”x-xo“ < p(xo) and [t| < é(xo).

18



The functions Hh(x), with Hi(x) = F(x), may be calculated from T(x) by
successive application of a differential operator. Since (3.12) is autono-

mous, if |t |, |t2| and Itl + t,| are all less than 6&(x) then

(3.14) wiw(x, tl), t2) = w(x, ty + te)
Now let T
( m = % j; f(T) aT
. £
(3.15) a(t) = J f(1) dT - mt
) >
M = sup [a(t)]
L

0<t<T
where a(t) is periodic of period T. We define

(-]

(3.16) o(y, e t) =y + E ea(t)" H (y) -
n=1

Let Gy = f(x, €)e CN+l | x ¢ Hy, le] < 6(x)/y}, then, by the remark above,
Gy 1s an open subset of CN+l and for each %, <t ¢ El, ¢ 1s analytic in
(y, e) over G-
Consider

(3.17) v' = gm F(v)

and let u(x, e, t) and v(x, &, t) be solutions of the initial value problems
u(x, €, 0) = v(x, €, 0) = x for equations (3.11) and (3.17) respectively. We
will show that

(3.18) u(x, e t) = olv (x, & t), & t).
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First, it is easily seen that

.t
ulx, e, t) = W(X, € J f(T) ar) ’
0

v(x, g, t) =w(x, em t).

Consequently, for (x,e) € G, and

t
lemt| < 8(x) , e | f£(rar| < 8(x) ,
0

we have, from (3.14),

¢(V(x, € t): €, t) = W(V(X, €, t); € a<t))

t
w(w(x, emt), € a(t)) = w(x, € J £(7) ar)
0

u(x: €, t):

which proves (3.18).

The relations g (v) = m F(y), ga(y) = 0 (n> 1) and ¢ (v, t) = a(t)"1(y)
must follow from (2.27) and (2.28). However, in this case, it is a more diffli-

cult route.

If m = 0, then all solutions u(x, €, t) of (3.11) with (x, ) ¢ GO are peri-
odic of period T. However, solutions with (x,,€) € G and (x, €) a boundary
point of G, need not be periodic. For example, consider the simple scglar

0
equation

u' = e(sin t) Wl
whose solutions are

X
1-ex (l-cos t) °

u(XJ € t) =
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llere, G = 02, M=2,m=0, §(x) = l/lxl, and consequently

GO = (x, €) ¢ C2 [ ]xel < 1/2}. The real solutions with x ¢ 2_1/2 go to

infinity in finite time.

Finally, for our third class of equations we will restrict the discussion to

real variables. Consider
(3.19) u' = € flu, t) u

where f(u, t) is a scalar function continuous in (u, t) and periodic in t
of period T > 0. Also for all t, f(u, t) is analytic in u over i and
also homogeneous of degree K # O in u, i.e. f(Au, t) = AWHe(u, ).

We define the scalar function o (x, €, t), with oax, & 0) = 1, such that
(3'20) u(x7 €, t) = a(x; €, t)x

This leads to the scalar equation

a' = e f(x, t)

and consequently

1

(3.21) a(x, & t) = T 1/
' [l-pe J f(x, 7) dt]

0]

Now let
1 :T
p(x) =% | f(x, 7)ar,
0
then b(ax) = A"p(x) and the equation
(3.22) v' = g b(v) v
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is of the same type as (3.19) and therefore

1
M-p eo(x)6]H

(3.23) vix, € t) =

We observe that wu(x, e, T) = v(x, & T). Now define

CP(Y: €, t) = u(V(YJ € 't); ) t)

then using the homogeneity of f(u, t) and (3.20), (3.21) and (3.23) we find

(Y; & t) = L
¥ M+ ueq(y,t)]]ﬁl
where +
oy, t) =v() t - | £y, 7)am,
0

aly, 1) = aly, t).
Also, in the same way, one verifies that
u(x, e t) = o(v(x, & t), & t).
If G is an open subset of EN with compact closure G and
M = sup ‘q(x, t)l, xeG, O <t <T,

then o¢(y, €, t), for each t, is analytic in (y, €) for y e G, |e| < 1/M|u].

Let h(x, €) = v(x, &, T) where v(x, €, t) is given by (3.23), then if we

expand

[~5]

h(x, ) = x + ? enhn(X)

n=1

e2



we find hl(x) = T b(x)x. Using the homogeneity of b(x), one may verify
that

(3.2h) g_:(x, 2 - n (n(x, ©)).

One may also verify that (3.24) is valid for the class (3.11). In Section k4
we will show that (3.24) is a necessary and sufficient condition for the

function g(y, e) in the stroboscopic equation

v' = g(v, €)

to be linear in e.

25



4, GENERAL THEORY

Consider the initial value: problems

l
»

)

(&.l) u' = f(u, t) , ulx, 0) =

()""2) v! g(v) ’ V(X, O)

X .

where f(x, t) is a continuous function on EN+l into EN and g(x) is a
continuous function on EN into EN. If f(u, t) is periodic in t of
period T > O, then Urabe [3] has shown that the existence of an autonomous
system (4.2) whose solutions satisfy v(x, T) = u(x, T) implies the existence

of a function @(x, t) which relates the solutions according to
U.(X, t) = QP(V<X: t)) t)

and which is periodic in t with period T. We shall repeat part of Urabe's

proof here with some modifications.

It is required that the solutions of (4.1) and (4.2) be unique and exist for
all t. These hypotheses, which are imposed here for the sake of simplicity,
yield a global result. They can be modified to produce a local result. As

is well known, v(x, t) is a dynamical system; in particular, +v(v(x, t),T) =
v{x, t+T) for all x € EN, t, T € El. Suppose there exists a continuous furic-

tion o(x, t) on ET into E' such that

(4.3) u(x, t) = o(v(x, %), t)
Setting x = v(y, -t) we obtain

(b L) o(y, t) = ulv(y, -t), t)
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Conversely, if ¢(y, t) is defined by (4.4), then (4.3) follows by direct

substitution. Hence there exists a unique function ¢(y, t) which satisfies

(k.3).

If f(x, t) is periodic in t with period T, and if v(x, T) = u(x, T),
then u(u(x, nT),t) = u(x, nT + t) and u(x, nT) = v(x, nT) , n =0, + 1,

.e. . Hence v(y, -t-T) = v(v(y, -t), -T) = u(v(y, -t),-T)

and it follows from (4.14) that oy, t+T) = u(v(y, -t), -T +t + T) = o(y, t).
Therefore ¢(y, t) is periodic in t with period T. Finally, if f(y, e, t)
and g(y, €) are analytic in (y, €), then so are. the solutions u(x, e t) and
v(x, & t) of (4.1) and (4.2) and hence, ¢(y, €, t), defined by (4.4) is
analytic in (y, €).

Thus, in order to show existence of a stroboscopic representation as defirned
in Section 2, it suffices to show the existence of an autonomous system (2.12)
whose solutions satisfy v(x, €, T) = u(x, &, T) . Therefore, one approach
to the problem is to seek hypotheses on wu(x, &, T) which imply the existence
of a corresponding autonomous system, and then attempt to find conditions on
f(u, €, t) which imply the hypotheses imposed on u(x, e, T). So far as the
first part of this method is concerned, u(x, e, T) can be replaced by a given
transformation h(x, e) and the problem can be formulated as follows. Given
an analytic function h(x, €) which has a local expansion of the form (more
precise hypotheses to be given later)

o

(4.5) h(x, ) =x+ ) & (x)
n=1

and given T > O, find an analytic function g(x, €) of the form

[o=]

(4.6) glx, &) = ) g (%)
n=1
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such that the solution v(x, €, t) of the initial value problem

(a) v' =g(v, ¢)
(%.7)
(b) V(X, € O) = X

satisfies the relation
(u'8) V(X, €, T) = h(x: E)

This is the problem to be discussed in the present section and in Section 5.
This problem has been found to be of interest in itself by others. Sharshanov
(47, (5], and Urabe [3] have studied the problem and produced sufficient con-
ditions for the existence of g(x, ). (In their work the parameter € does
not appear, but the problem discussed here can be put in their setting by
appropriate modifications.) However, their conditions exclude functions

h(x, €) of the form (k.5), i.e., small perturbation of the identity.

Part of the discussion in this section is formal. In particular, in certain
instances power series are manipulated without justification. Certain rigor-
ous results are summarized as lemmas. Throughout this section it will be
assumed that h(x, ¢) is an analytic function of (x, &) on G into T
where G 1is a connected open subset of EN+l such that EN x {0} € G. More-
over, it will be assumed that h(x, 0) = x for all x ¢ V. Tt follows

that given a compact set A C EN, there exists 6> O such that A x [-6,6] c G
and such that the series (4.5) converges uniformly in (x, ¢) on A X [-§,8]

The functions hn(x) are single valued analytic functions on EN into EN.

Proceeding formally, we seek an analytic function g(x, e) of the form (4.6)
such that the solution of (L4.7) satisfies (4.8). Since g(x, 0) =0,
v'(x, 0, t) = O and hence v(x, 0, t) = x. Thus v(x, €, t) has an expansion

of the form

(4.9) Vi 6 t) =x+ ) v (%, )
n=1 )
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where vn(x, 0) =0, n=1, 2, ... . Referring back to Section 2, Vv has
the same form as ¢, and g has the same form as f for fixed t. Therefore,

the expansion of g{(v{(x, e, t), ¢) 1is directly obtainable from (2.2k):

© =) n-1
() &lvlx e 1), €)= ) gG) + Y Sy v G t)
n=1 n= v=1
(k.10)
N . i k
' (i1) () 3% (x)
1 1 m
(b) V X, t) —Z‘ kl. Z . ‘ z VJ]_ (x)t)'"ij(x)t)ax(il)...ax(ik)
k=1 Jqte e+ 11,...,ik=l

Substituting (4.9) and (4.10) into (L4.7) and equating coefficients of like

powers of &, we obtain

' —

V0 ) = g (x)
(k.11) n-1

vilx, £) =g () + ) V. (% %), n=2 3

v=1
For v =1, ..., n-1, the functions V___ v(x, t) are expressed in
J

terms of v, 5 Vo, and g, ..., g ;- From (4. 7b), vh(x, 0) = 0O,
n=1,2, ... . Hence (4.11) uniquely determines the v, in terms of the g :

vl(x, t) = t gl(x)

(k.12)

n- t
t gn(x) + Ej J Vh-v,v<x’ ™y aT, n =2, 3, ...
v=l O

vn(x, t)
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Then the g_ are uniquely determined by (4.8) and (4.12):

n
g,(x) = % by (x)
(k.13) n-l T
g, (x) = % h (x) -%— Xl ] Vawy,y (0 T) AT, m =2, 3,
v=l 0

This establishes uniqueness of the function g(x, €).

It may be noted that the requirement g(x, 0) = O 1is essential to the unique-
ness result. For example, let A be s non-zero real constant matrix such
that eTA = I and let h(x, €) = x for all x ¢ E'. Then g(x, €) =0
satisfies the above requirements and so does g(x, €) = AXx except for the
condition g(x, O) = 0. The requirement of analyticity is also essential

to uniqueness as is shown by the following one-dimensional example. Let

T =27 and h(x, €) = x +27e. Then g(x, ¢) = € is the unique analytic
function which satisfies the above conditions. Given any positive integer n,

let

[

n X
1 + € cos %

g(x, ¢) =

for ]€| < 1 (with g(x, 0) = 0). This function has continuous derivatives
of order [Eé$] with respect to x and €. Moreover, it is single valued

and analytic in both x and e if 0K le[ < 1. The solution of the differ-

ential equation

I3
n v
1l + g cos ry

with initial value x is uniquely determined by the equation

n+l .V . X
v - X+ € [sin — - sin E] = et
€
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which is obtained by integration. Since v = x + 2We satisfies this equa-
tion with t = 2m, we conclude that v(x, €, 2m) = x + 2me = h(x, €). Thus
smoothness requirements on g(x, &) short of analyticity are not sufficient

to give uniqueness.

If (4.6) converges to an analytic function g(x, e), then by known existence
theorems, the solution v(x, € t) of (4.7) is analytic in (x, ). Since
g(x, O) = 0, it follows that given any compact set A C EN, there exists

§ > O such that the solution wv(x, € t) exists for 0<t< T if x € A
and Iel < 6. Then, for (x,e) € A X(-G, 8§), the formal manipulations which
produced (4.12) and (4.13) are justified and it follows that v(x, g, ) =
h(x, e€). However, attempts to find sufficient conditions for convergence with
the use of (4.10b), (4.12), and (4.13) have been unsuccessful (except for
the case where h(x, e) is linear, a case which was dealt with more easily
in Section 3). If all but a finite number of the functions gn(x) are O
for all x ¢ EN, then obviously (4.6) defines an analytic function on all

N+1

of E We now present a simple characterization of a very special class

of functions h(x, e), those for which gn(x) =0 for n> 2.

Lemma 4.1. Let h(x, e) be analytic on G into EN, where G is a con-
nected open set in EN+l such that EN x {0} € G, and assume h(x, 0) = x
for all x e BV whereby h(x, €) has a local expansion of the form (L.5).
Let the functions g (x) be defined by (4.10v), (4.12) and (4.13). Then

n
gn(x) =0 for n>2, x¢€ EN, if and only if

(*) & nix, €) = by (a(x, £))

for all (x, €) € G.

Proof: Given (®) and given any bounded open set U C EN, choose 6 > 0 such
that U x(-§,8) € G. Then the function v(x, €, t) = h(x, % t) is defined
for 0<t<T, (xJ E) € U X ('6:6)5 V(x, g, O) = X, V(X, €, T) = h(x) E);

and v(x, €, t) satisfies the differential equation



Hence g(x, €) = % hl(x) satisfies the conditions previously imposed and so
the coefficients in its expansion in powers of € are uniquely determined by
(k.12) and (4.13). Therefore gl(x) = % hl(x) and gn(x) =0 for n> 2,

x € U. Since U is arbitrary, the result follows for all x ¢ N,
Conversely, if gn(x) =0 for n>2, xc¢ EN, then the series (4.6) con-
verges to the analytic function g(x, €) = € gl(x). Given any bounded open
set UC EN, there exists 6 > O such that U x (-6, 8) € G and such that
the solution v(x, &, t) of (4.7) is defined for 0< t < T for

(x, €) € U x(-8, 6). It then follows from (4.12) and (4.13) that

v(x, €, T) = h(x, ). Let w(x, t) be the solution of the initial value
problem

(-)H(-)

w(x, 0) = x

Then v(x, €, t) = w(x,€t). Hence h(x, €) = w(x, €T) and substitution

into (**) yields

)
2 uix, ) = T g (nlx, <))
Setting € = O we see that hl(x) =T gl(x) and therefore (*) holds on
U x(-6,6). But both sides of (¥) are analytic on all of C and hence (¥)
holds on G (e.g., see [11], pp. 34 and 35). This completes the proof.

In connection with lemma 4.1 we note that although g(x, €) = egl(x) is
analytic on all of gL s gn(x) =0 for n> 2, h(x, €) may not be since
the solution of (4.7) may not exist for all +t ¢ [0, T]. For example, let

N=1and g(x, €)= ex2. Then

X
1-ext

V(X, %) t) =
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e

and
x

n(x, e) = 1-exT

Hence

G=f(x, )] ex<1).

We shall now pursue another approach to the problem wherein the solution
v(x, €, t) of (.7) is expressed in terms of the iterations of h(x, &)
without simultaneously constructing the function g(x, €). In addition to
the hypotheses previously imposed on h(x, ) it will be assumed that

(h{x, €), €) € G for all (x, €) € G. This implies that the iterations of
h(x, €), defined inductively by the relations

hi(x, e, 1) = h(x, €)
(k.14)
h(x, e J+1) = h(h(x, e, 3), €),3=1, 2, ... ,

are analytic in (x, e) on G. It follows that

(h'lS) h(h(x: €, i): €, J) = h(x: €, i+j); i, =1, 2,

With the use of (2.23), with (x, €) replaced by h(x, €, j), it can be

shown that the series expansion of h(x, €, j+l1), in powers of & has the form

(4.16) h(x, €, §+1) = x + Ef e’n_(x,3+1), 3=1, 2,
n=1
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where

hn(x, 1)= hn(x)

by (x, §+1) = by (x) + by (x, §) , § =1, 2,

(%.17) h (x, §+1) = b (x) + n (x, §) + H (x, §), n=2,3,
N
14) (1)
H(x, §) = X X o X ) 511 x,3)e g (x 5)e
v=1 k=1 l =V il,...,ik=l
3n__ (x)

ax 1), U

It also follows from (2.23), with £(x, ¢) replaced by h(x, e, i) and h(x, €)
replaced by h(x, €, j) that

@

n(a(x, e 1), 6 3) =x+ ) & [ 0o 1) + 0 (x, §)]
n=1
(L.18) ©
+ Z Ean(x: i, J) P) i, j=1, 2,
n=2
where
v N (il) (i)
k
H(X, 1: J)"XX }];_'Z E th(Xl) th(;i)'
v=1 k=1 jl+oo-+jk =YV il, -,ik_—'l
(k.19)
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From (k.15), (4.16), and (4.18) we obtain the relations

(a) h (x,1) + hy(x,3) = by (x, i+])
(k.20)
(®) h (1) + b (x,3) + H (x,1,3) = h (x,i+]), n=2,3,...,

i, J=1, 2,

These relations are rigorous consequences of the hypotheses imposed on h(x, €).
For by hypothesis and known theory of analytic functions (e.g., see (111, p- 35),
the unctions h(x, e, j) are analytic on G for all J=12, ... . Given a
bounded open set U C EN and given positive integers i and Jj, there exists

§ > O (which, in general, may depend on U, i, and j) such that the relations
(4.16) through (4.19) are valid for x € U and |e| < 8. The number § may
tend to 0 as 1 - or j-— « , but this does not effect the result since

the relations (4.17) and (4.20) are independent of ¢ .

Actually, the hypothesis (h(x, e), €) € G for all (x, €) € G is redundant
so far as (4.20) is concerned. Because h(x, €) is a small perturbation,
given a bounded open set U and a positive integer i, there exists §> O
such that (h (x, & Jj), €) e G for j =1, ..., i, x e U, and |e| < &,

and the above arguments go through. In fact if the hn(x) are arbitrary
anslytic functions on EN into EN, without regard for convergence of (L.5),
and if the hn(x, j) are defined by (4.17), it seems likely that (4.20) can

be established by a similar argument with the use of truncations of (4.5).

It follows from the first two equations of (4.17) that hl(x, i) =3 hl(x),

j=1, 2, ... . Thus, defining pl(x, t) to be

(k.21) p (%, £) = t by (x)
we have hl(x, j) = pl(x, i), 3 =1, 2, ... . It will now be shown by
induction that for each m = 1, 2, ... there exists a function gn(x, t)
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which is a polynomial in t of degree < m whose coeffiéients are analytic
functions on E' into E' such that

(4.22) P, 3) =n (x, §), =1, 2, ...

Assume it true for m<n - 1 and let

N . .
(i1) (i)
(h.235)  (x,t) = X X T z X pj]lL (x,%). .- ka (x,%) -
v=1 k=1 Joter et = ipseeeri =l
3n__ (x)

Bx(il)...BX(Lk)

It follows from (4.17) and the induction assumption that Hn(x,j) = Qn(x, i),
j=1, 2, ..., and hence, by (4.17),

(k.2k) ho(x, § +1) -n(x, §) =h (x) +Q(x, j)

By induction assumption and (4.23), hn(x) + Qn(x, t) is a polynomial in t of

degree < n - 1 and therefore the nth difference of the right side of (L.2k)

with respect to j is O. This implies that the (n + 1)th difference of

h(x, j) with respect to j is O, and hence for each fixed x there exists

a polynomial pn(x, t) in t of degree < n which satisfies (4%.22). More-
hn(x) + Qn(x, i), i =1, 2, ... aund

over, from (h.2h), pn(x: j+l)'Pn(X, j)

this implies

2, 3,

(25)  p (x5, t+1) -p (x, t) =h (x) +q(x, t), n

for all real t. We now show by induction that pn(x, 0) =0, n=1, 2,
By (4.21) it holds for m=l. If it is true for m < n - 1, then by (4.2%),
Qn(xyo) = 0, and by (u'25): Pn(x: 1) - Pn(XJ 0) = hn(x)' But

pn(x, 1) = hn(x, 1) = hn(x) and hence pn(x, 0) = 0.
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The polynomisl pn(x, t) is uniquely determined by the n + 1 values
pn(x, 0) = 0, pn(x, j) = hn(x, i)y 3 =1, ..., n, and it is easily seen that

n
- 1 .
(k.26) P £) = 3= ) AL (8) B (x, 1)
i=1
where ith Column
1 2 . n 1l.. 1% n
1 2° . n2 _ 1l.. t2 n2
(h27) A =1. . N L
n T s L
1 2" . " 1 .. N nh

This shows that the coefficients of pn(x, t) are analytic functions of x

on EN. The following lemma has now been established.

Lemma 4.2 Let G be a connected open set in EN+l such that EN X fO} c G.
Let h(x, €) be an analytic function of (x, e) on G into B such that
h(x, 0) = x and (h(x, €), €) € G for all (x, e€) € G. Then the iterations
nix, € j), =1, 2, ..., defined by (4.15), are analytic on G and have
local expansions of the form (4.16) where the hn(x, j) are given by (k.17)
and satisfy (4.20). The function pn(x, t) defined by (L4.26) is a polynomial
in t of degree < n, pn(x, 0) = 0, and pn(x, j) = hn(x, i), 3 =1, 2,

Proceeding formally, we now let

[ee)

(4.28) px, & t) =x+ ) p (x, t)

n=1

Then p(x, €, 0) = x and p(x, e, 1) = h(x, e). Thus p(x, €, t) satisfies
(4.8) with T = 1. It will now be shown that (4.28) formally defines a
dynamical system, i.e.,

(l*"29) P(P(x; €, t)) €, T) = P(X; g, t + T) .
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From (2.23),

o]

p(p(x, & t), & T) =x+ }T e [p (x, t) + p (x, T)]

n=1
(1.30) i}
Y o (x, b, )
n=2
where
o 1 QL (i) (i)
(5.31) Q (x,%,7) = X Y &) ) p3) (x,8).-opy (5,8).
v=1l k=1 jl+...+jk=v il,...,ik=l
3p__(x, )

n-v

Bx(il)...ax(ikj

Hence (4.29) is satisfied if and only if

Pl(x’ t) + Pl(x) T) = pl(x’ t o+ T)

(k.32)
Pn(xJ t) + pn(x) T) + Qn(x; t, T) = pn(x; t + T): n=2, 3

It will now be shown , independently of the question of convergence of (k.28)

and (4.30), that (4.32) is satisfied.

Lemma 4.3 If the hypothesis of lemma 4.2 is fulfilled, then the funétions
pn(x, t) defined by (4.26) satisfy (k.32).

Proof: By lemma 4.2, pn(x, j) = hn(x, j), 3 =1, 2, ..., and it follows from
(4.19) ana (4.31) that Q. (x, i, J) = H (x, i, i), i, =1, 2, ... . It then
follows from (4.20) that (4.32) is satisfied for (T, t) = (i, j), i,
j=1,2, ... . Given any positive integer i, if t = i the relations (k4.32)
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become polynomial equations in T which are satisfied for Tv=j, j =1, 2,
Therefore they are satisfied for all real T. Thus (4.32) holds for all real
T if t is a positive integer. TFor fixed T, these relations are polynomial
equations in t which hold for t =1, i =1, 2, ... and therefore for all
real t.

Tt now follows that if (L.28) converges to an analytic function and if the
manipulations which produced (4.30), (4.31) and (4.32) are justifiahle, then
p{x, & 0) = x, p(x, €, 1) = h(x, €), and (4.29) is satisfied. (These
remarks contain tacit assumptions as to the region of convergence and, in
particular, analyticity of ﬁ(x, g, t) in (x, ¢) at least for 0< t < 1.)
Then v(x, €, t) = p(x, &, %) satisfies (4.7b), (4.8), and has the group
property (4.29). From this it can be shown (see Section 5) that v(x, &, t)
satisfies (4.7a) with g(x, €) = v'(x, €, 0). Thus an investigation of the

onversen e (h R Lee

gence of (4.20) gffords us an al th the

Ly i<

problem formulated at the beginning of this section. This method will be used

in Section 5 to prove a convergence theorem.
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5. A CONVERGENCE THEOREM

Let

P
\.n
}_l
S~
D
—
ct
P
|
1
ja
1]
l.._J
n

¥
*
"

where Ahi(t) and A are given by (k.27)

It follows from (4.27) that
n (j) =0, i4£1i. 1 =0 £ i

B
= n and [a) {3 = 1 Trom +hica
U . \ \I’ d 7- -L’ d , LA 4 ) *" Chlia \J. / -l 4 4 W VLI

nl \Jni t113 1
seen that (with an obvious modification of notation for i = n)

_ -i-t(t-1) ... (t-i+1)(t-i-1) ... (t-n)
(5.2) e (t) = (-1)° Sl ,
i=1, s n
n=1, 2,
Differentiation yields
(5.3) 0, (t) = ﬁ—%%g— E 1 (t-8)
j=0 z;o
4 24
’ £#3

We begin by finding upper bounds for Ieni(t)] and leéi(t)l. For this purpose

use will be made of the following lemma.

Lemma 5.1 Given a positive integer n and any t € [0, n], let
Jg» Jdy» +++» J, De the integers in [0, n] enumerated in order of their dis-
tances from t, i.e., lt-jkl < lt-3,,, 0 B=0, ..o, n-1. Then [t-j ] <2
and ]t-jkl <k, k=1, ..., n
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Proof: Clearly It-%v+lli It-jkl + 1 and therefore the result follows by in-
duction on k once it has been established that It-jol <1l and It-jll < 1.
If t is an integer then j, =t and hence It-jO] = 0, ]t-jl] = 1.

Otherwise t is interior to a unit interval with and jl as end points.

Jo
Hence It—jol < 1 and It-jll < 1.

Given a positive inteser n, consider the function Gni(t) for any

i=1, ..., n. Given t € [0, n] let jo, jl, ceey jn be the quantities de-

fined in lemms 5.1. One of these integers is necessarily i, i.e., there

exists koe {0, 1, ..., n} such that jk = i. It follows with the use of
0
lemma 5.1 that
n n ) n
mle-i|l = 1m |t-5 < 0 k<
j:o = k_:l
AL kfk k#ko
and therefore, by (5.2),
n
(5-4) lo;(8)] < (1), o<t<n
From (5.3)
n
n
! -
J=O £=0
J%i z#i
L#J

It follows by the same reasoning used above that each of the n. products on

the right side of this inequality is bounded by n! and hence

(5-5) Hﬁ&”gn@),ogtsn
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n
The inequality (?) < 2% follows from the relation E‘(?) = 2%, and hence
i=0
(5.4) and (5.5) yield

n
le s (8)] <2 |
(5.6) , 0O<t<mn, i=1, ..., n
. n
le;,(t)] <n2
Given any positiye integer m, it is clear that Ieni(t)] assumes its maximum

value on the interval m <t <0 at t =-m (i=1, ..., n). Hence for

-m< t<O,

m(m+l)...(mtn) _ _ m+ny m .2n
o, (8] < S =n() () <m2te
A similar bound is obtainable for lGﬁ_(t),, and since these bounds exceed the
i
ones in (5.6) we have

030 (8] < m 2" 27

(5.7) , -m< t<n,i=1, ..., n

. m 2n
_ [eni(t)l < m2 n2

As in Section L4, we are primarily interested in analytic functions h(x, e)
on EN+l into EN. However, such functions can be extended analytically to
an open set in CN+l , and it is necessary to consider h(x, €) on a complex
domain in order to invoke a theorem on uniformly convergent sequences of
analytic functions. Therefore the hypotheses on h(x, &) will be stated for
a complex domain. The space Ek will be regarded as imbedded in Ck, k =N,
N + 1, and the norm of a vector x € CN will be denoted by

N

el = Y PR

j=1

1/2
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The first two hypotheses to be imposed on n(x, e) are the following:

(i) h(x, e) is a single valued analytic function on a connected open set
ve ™ ointo o such that BV x {0} €V and h(x, 0) = x for all
x € ¢V for which (x, 0) ¢ V.

(ii) (h(x, €), €) e V. N 2 for all (x, €) e V N L,
Let

(5.8) - .

5. Vo=fxecC [(x, 0) e V}
It follows from (i) that given any X5€ V., there exist p(xo) > 0 and
é(xo) > 0 such that (4.5) converges uniformly in (x, €) ¢ A on the

neighborhood Hx-xon < p(xo), lel < 6(xo). Moreover, on this neighborhood

(h.s) can be expanded in a uniformly convergent power series in the N + 1
1 1 N N
( )-xé ), ey x( )-xé ),

hn(x) which appear in (4.5) are analytic on V-

complex variables x €. In particular, the functions

Tt follows from (ii) that the iterates h(x, e, j), defined by (k.1h), exist

for all j =1, 2, ... if (x, €) e V N gL, As (real) analytic functions of
analytic functions they are analytic on V N EN+1 (e.g., see [11, p. 35].

Thus, given x. € EN, there exist p(xo, i)> 0, &(x., i) > O such that the

.70 o’
series (4.16) converges uniformly in (x, €) € 2 on the neighborhood

Hx-xOH < p(xo, i), |e| < 6(xo, i), and the coefficients of the expansion are

given by (4.17). Also, on this neighborhood (4.16) can be expanded in a uni-

formly convergent power series in the N+1li real variables x(l)-xél),

L0 ()
O b

*

Without regard for the existence of the iterates h(x, e, j) for complex (x, ),
the functions hn(x, j) are defined by (4.17) as single valued analytic func-
tions on V,, where V, is defined by (5.8). The next hypothesis, which is
very stringent, imposes a condition on the functions .hn(x, i). It is shown

at the end of this section that the class of functions which satisfy the
condition is at least large enough to contain the class of linear functions

properly.
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(iii) Given Xq € EN, there exists p(xo)'> O and M(xo) > 0 such that
. N N n
if x € C and ”x-xO” < p(xo), then x e V, and ”hn(x,1)L < M(xo)
for i=1, «.., n, n =1, 2, ..., where the hn(x, i) are defined on Vo
by (4.17).

Lemma 5.2 If h(x, €) satisfies hypotheses (i), (ii), and (iii), then given
s bounded open set A C EN, there exist a bounded open set U C Vb (where VO
is defined by (5.8)) and M> 0 such that Ac Uand | (x, i) <M,

i=1 .e.y n n=1, 2, ..., for all x € U.

Proof: Given x € A, let s(x) = fyeCN[ lly-x|| < o(x)} where p(x) is given

in (iii). Since A is compact, a finite collection of the s(x) cover it:

- m
Ac U s(x,)
=1 Y

m
Take U = | s(xj) and M = max M(xj)

J=1 j=1,...,m

With the use of the definition (5.1), (4.26) can be written

(5.9) p(x, ) = ) 0. (8) n (x, 1) .
i=1

It will now be shown that the series

(a) px, & t) =x+ ) &b (x, t)
n=1
(5.10)
(v) p'(x e t) = ) &bl (x, %)
n=1

converge to analytic functiomns.
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Lemma 5.3 If h(x, ¢) satisfies hypotheses (i), (ii), (iii) then, given any
bounded open set G C EN, there exists § > O such that the series (5.10)
converge uniformly in (x, €, t), for (x, €) € G x(-5,6) and for t on any
finite interval, to functions which are continuous in (x, &, t) on

G x(-86,8) x o and, for fixed t, are analytic in (x, ¢) on G X(-6,8). More-
over, given Xy € G , there exists p(xo) > 0 such that the power series
expansions of p(x, € t) and p'(x, €, t) in the N + 1 real variables
x(l)-xél), cee, x(N)—xéN), ¢ converge for Hx-xO“ < p(xo), |e] < 8, and

all real t.

Proof: By lemma 5.2 there exist a bounded open set U C Vb and M> O such
that GCU and |b (x, i)|| < M, i=1, ..., n,n=1, 2, ..., for all

x € U, Choose any & 1in the interval 0 < & < l/M. Given any T.> O,

0

choose a positive integer m> T If t e [—TO, TO] and n > m, then

0
PR 4 I A 7N - I
-m< tT<n and lkjni\'l:” ana |o

It then follows from (5.9) that

'
ni

S

2\ LY 9 A SRR S fe )\
'G}I are pourndaed accoraing u \D« ()

o, G, €]} < m2"(%0)
m n 2
Hpé(x, t)]| < m.2"(4M) n
for all x € U, t € f-TO, TO], n > m. Application of the ratio test shows that

Ej 5" m.2m(hM)nn <

n=m

(o]
}j 6% m.2™ (L) r° < o
n=m
and these series dominate (5.10a) and (5.10b) respectively for n>m if
1 .
(x, & t) € Ux 9 x [-T,, Ty], where ¢ = {ecC | el < 8 }. This establishes
the uniform convergence of (5.10) on U x © X f-TO, TO]. It follows from a

b3



theorem of Weierstrass (e.g., see [12], theorem 3.1, p. 38) that p(x, e, t)
and p'(x, €, t) are analytic in (x, €) on U x g for each t ¢ B, Given
any x5 €U there exists p(x )> 0 such that {x ¢ C | Hx-xO“ < p(x Y} cu

whence { x ¢ t [ |lx- xo” < p(x )} X0 €U x o . Therefore the power series
expansions of p(x, €, t)and p'(x, €, t) in the N + 1 complex variables
x(l)-xél), cen, x<N)-xéN), ¢ converge for Hx-xOH < o(xo), le] < 8 ([117],

Chap. II, theorem 3, p. 33). This proves the assertions of the lemma for
(x,e) € U x ¢ and hence, since G X(-6,8) € U x 0, they hold for
(x; E) € Gxo-

It follows from (4.16), (5.2), (5.9), and (5.10) that

[
>

P(x; €, O) =
(5.11)
hix, €, k), k =1, 2,

P(x: €, k)
for (x, €) € G x(-6, &8).

Lemma 5.4. TLet h(x, €) satisfy hypotheses (i), (ii), and (iii). Given a

bounded connected open set U C EN and TO > 0, there exist a bounded con-

nected open set G C:EN and 6§ > O for which the conclusions of lemma 5.3%
hold and such that p(x, €, t) ¢ G for all (x, €, t) € U x(-§,6) x [-Ty Ty

Proof: Choose any bounded open set U, C EN such that U c U,. By lemma

1 1
5.3, there exists 61 > O such that the conclusion of lemma 5.3 holds with

respect to 51, Ul. In particular, p(x, &, t) is continuoug on the compact
set U x [ - 61 51] x [-Tp» Tyl and therefore p(U, [- §£, El], r-7., TO])
22 0

is compact. Choose any bounded connected open set G C EN which contains it
and again apply lemma 5.3, taking & < 61/2.

Given a bounded connected open set U C EN and TO > 0, choose G and § in
accordance with lemma 5.4 Then p(x, ¢, t) € G for all (x, &, t)

in U x (-8,8) x [—TO, TO]. For any T € El, p(x, &, T) is analytic in (x, e)
on G x (-6,8). Therefore (see [117], pp. 33 and 35) p(p(x, e t), &7) is

L



analytic on U x{(-6§,6) for all t ¢ [-TO, TO], T € El, and the power series
expansion of this composite function can be obtained by formsl substitution.
This implies the convergence of (4.30). It follows from lemma 4.3 that the
relations (4.32) are satisfied, and therefore p(x, &, t) satisfies (%.29) for
all (x, €) e U x (-6,8), t ¢ [-Ty> Tols and e E'. Differentiation of (k.29)

with respect to T yields
P'(P(x) €, t): g, T) = P'(x; €, t + T)

and setting T = 0O we obtain

p'(p(x, € t), e 0) = p'(x, & t)

Hence p(x, e, t) is the solution of the initial value problem

p' = é(PJ E)
(5.12)
P(X, €, O) =X

for (x, €) € U x(-6,8) and t € [-Ty Ty, where

(5'13) é(x) E) = p'(x} €, O)

According to (5.11), p(x, &, 1) = h(x, €). So far, T. has been taken to be

any positive number. Now require TO > 1. Then p(x,oe, t) is a solution
of (5.13) for 0< t< 1, (x, €) € U x (-5,6), and so p(x, e, t) satisfies
(4.7) and (4.8) with T =1 and g = g- However, g(x, &) is defined by
(5.13) on all of G x (-6,8). It will now be shown that p(x, e, t) satisfies
(5.12) for all (x, e) € G x (-8,8) if |t]| is sufficiently small. That is,
given any (xo, g) € G x (-8,6), there exists T.> O such that p(xo, g, t)

0
satisfies (5.12) for |t| < 7

o
Given (xo,e) € G x (~6,6), there exists a connected open set G, such that
él cC G, Xy € Gl’ and Gl NnuU % ¢. (since G 1is connected, Xy can be connec-
ted to a point in U by a compact polygonal arc A < G. Then Gl can be

taken to be a p-neighborhood of A for p sufficiently small.) For fixed E,
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p(x, ¢ t) is continuous in (x, t) on él x B and p(x, e, 0) = x. There-
fore, given x € G , there exist Tx > 0 and a connected open set II{x) con-

taining x such that p(H(x), & t) c G if |t < T, But G, is compact

1
and so it can be covered by a finite number of these neighborhoods:

k
Gl c .U H(xi)
i=1

Let 7, = min. (Ty s vees Txk)- Then T,

> 0 and p(éi, €, t) € G for all
1
T € (-TO,TO). Hence, for the given e, if [t] < 7

o then p'(x, € t) and
g(p(x, €, t), e) are analytic in x on the connected open set Gy, and they
are equal on G, N U. Therefore ([11], pp. 34 and 35) they are equal on all

of Gl and, in particular, at x

o
The function p{(x, €, t) is defined by (5.10) for all t. It follows from

well known extension theorems for ordinary differential equations that p(x, €, t)
satisfies (5.12) on any open interval a < t< B (@< 0 < B) on which it re-
mains in G. Finally, in view of (5.11), we see that given T > 0, the func-

tion
t
V(x: €, t) = P(x: &, '.f)
satisfies (4.7) and (4.8) with
l t
g(xJ E) = T P (xJ €, O)

for any (x, €) € G x (-6,8) for which +v(x, e, t) e G if 0< t < T. The

following theorem has now been established.

Theorem 5.1 If h(x, €) satisfies hypotheses (i), (ii), and (iii), then

given a bounded connected open set U c:EN, T> 0, and T. > T, there exist

0
a bounded connected open set G C EN which contains U, a positive number g,

and a function g(x, €) on G x (—5,6) into EN which have the following
properties. The function g(x, €) is analytic on G x (-8,8), g(x, 0) = O,

and given any x. € G there exists o(xo) > 0 such that the power series

<1)_X(<)1), x(N)-XC()N),

(0]
expansion of g(x, e€) in the N + 1 variables x
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converges for “x-xOH < p(xo), le|] < 6 . Given any (x, €) ¢ G x (-4,6), let
v(x, €, t) be the solution of (L4.7). If x e U then v(x, €, t) exists for
lt] < T,- Given any (x, €) € G x (~6,8) such that v(x, €, t) exists for
0<t<T, we have v(x, €, T) = h(x, €).

We conclude this section with an examination of class of functions h(x, €)
which satisfy hypotheses (i), (ii), and (iii). First it will be shown that
if h(x, €) is linear and satisfies (i) and (ii), then it satisfies (iii).

The linear functions which satisfy (i) and (ii) are of the form

(5.1%) h(x, €) = A(e) x

where A(e) is an N x N matrix, analytic in e with an expansion of the form

[ee]

(5.15) ACe) = ) &'
n=0

where the AN are real constant matrices and AO = I. Tt is assumed that
(5.15) has nonzero radius of convergence and so there exists 6> O such
that (5.15) converges for e e 0= {g € Cll |e] < 83 Then h(x, €) satis-
fies (i) and (ii) with V = CN X g For any N X N matrix B let '

N
Bl = [ LG
i, j=1
N

then [ABl] < ||| [IEll ana 3] < 3] fl or x e V.

]1/2

)

It follows from (4.14) and (5.1k4) that

(5.16) h(x, & k) = A(e)¥ x, k=1, 2,
From (5.15),

=]
n.+.. .+
k 1 Py
Ale)™ = }Z S Aoyt By
.,n, =0

1 k
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and collecting powers of & we obtain

o]
k
(5.17) A = ) B
m=0
where
1
(5.18) B, = ) By Ay
nl+...nk=m
where the summation hN extends over all k-vectors (n,,...,n ) in
O 1 k
which the nj are nonnegative integers and np+. .« ye=m. It follows that
(5.19) hr-n(x, k) = B X

Given real (or complex) numbers a,, & necessary and sufficient condition for

[e o]

}; n
a €

n=0

to have nonzero radius of convergence is the existence of a constant M> O

the series

such that lanl < Mp, n=1,2, ... . Applying this condition to each ele-
ment of the matrices A and noting that HAOH =, N , we see that there
exists M1 > 0 such that

lall < ¥4 /T, n=0,1,

Therefore, if n, + ... +n_=m, then ”Anl"'Ank” < Nk/2 MT , and so each

k

term in (5.18) is dominated by NE/ @ MT. There are (m;%il) terms in this

sum and hence

I < (m+k-l) Nk/2 MT

1B e k-1
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Let Mé = Mi A~ N ; then Nk/QMT E.Mg, k=1, ..., m« Also,

(m+k-l)

mtk-1
k-1 <

<2 n

22 ,k=l, ...,'m-

flence |[B |l < (W)™, k=1, ..., m, and |0 (x,k)|| < (31,)" ||Jx]| <

Ll (1] + 1)1, k=1, ..., m. This implies (iii).

A nonlinear function h(x, e) which satisfies (i), (ii) and (iii) will now be
constructed. Let N = 1 and P(x) = x + x°. Then P'(x) =1+ 3x2 > 0 for
real x, and it follows that P(x) has a single valued analytic inverse,
call it Q(y), on some complex neighborhood of the real axis (Q(y) can be

written explicitly in terms of radicals). Thus

(5.20) Ay) + aly) =y

and Q(y) is real if y is real. Let
V(X, €, t) = P[Q,(X) + &€ t]

For reel x and ¢, v(x, g, t) is a dynamical system, and defining

h(x, €) = v(x, €, 1) it follows that h(x, €) satisfies (ii) and

h(x, €, k) = v(x, €, k). Expanding the above expression for v(x, €, t) with
the use of (5.20) we obtain

x + [143Q(x)2 et + 3Q(x)et2 + £t

V(X, €y t)

Then

x + [13Q(x)% ek + 3Q(x) kS + £k

1

h(xJ €, k)

and it follows that h(x, &) can be extended to a complex neighborhood of E2,

the hn(x, k) can be extended to a complex neighborhood of El, and

hn(x, k) =0 if n>3 forallk=1, 2, ... . Therefore h(x, ¢) satisfies
hypotheses (i) and (iii). More generally, let P(x) be any function which is
analytic and has an analytic inverse, Q(y), on some complex neighborhood of
the real axis and which is real for real x. Let h(x, €) = P[Q(x) + ] where-
by h(x, e, k) = P[Q(x) + € k]. Then

noGe 1) = 5 ) (9601

k9



There exists a constant Mi > 0 such that

n
n
n—., SM;,H=1, 2, «e.

and therefore h(x, €) satisfies (iii) provided there exists M, > O such that

IP(n)(Y)I S_Mne ,yn=1,2, ...

The next, and last, example shows that the class of functions h(x, ¢) which
satisfy (i), (ii), (iii) contains functions which grow rapidly with ||x].

et N=2, v =(vl, v2), X = (xl, x2), and let 4(x) be any entire function on
Cl. Consider the autonomous system

!

V1

2 2
= - ¢ 17,(v:L + v2)v2

(5.21)
v, = € (v2 + v2)v
- AN RR-TAS T
2 1 . . . 2 2
for (v, €) € CC x C. The solutions satisfy the condition vy + v2 = constant,
and so the solution of (5.21) which satisfies the initial cdndition v(x,e,0) = x

is easily seen to be

I

2,2 . 2 2
cos[z(xl+x et]- x, sin [z(xl+x2) et]

x o

Vl(x; €, t) 1

It

. 2 2 2 2
v2(x, g, t) X, s1n[£(xl+x2) et ]+ x. cos [z(xl+x2) €t ]

2
Iet h(x, &) = v(x, & 1). Then h(x, € k) = v(x, €, k) and it is readily

seen from the power series expansions of the above functions that h(x, ¢)
N-+1

satisfies (i), (ii), (iii) with V=¢C ~. If x and € are real, then
h(x, €) is bounded for all x. But if € is pure imaginary (and fixed) and x
is real, then ||h(x, €)|| - « to the order
2
lx]le 2([l=l™) Tel

as [l = o
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Are the Perturbation Expansions for the Ground State of Helium the Same for
Hartree and Hartree-Fock Model Hamiltonians?*§

R. J. DICKSON AND J. SoKOLOPY
Lockheed Palo Allo Research Laboratory, Palo Alto, California
(Received 23 August 1965)

The Weiss-Martin variation-perturbation calculation for.the first-order function in the perturbation
expansion of the ground-state function of the helium atom, ostensibly using a Hartree-Fock model Iamil-
tonian, actually uses a Hartree model Hamiltonian. We show that the equation obtained for the first-order
function using a Hartrec model flamiltonian and the corresponding equation obtained using a Hartree-Fock
model Hamiltenian have no common solution. Thus, no conclusion may be drawn about the Hartree-Fock
approximation on the basis of the Weiss-Martin paper.

I. INTRODUCTION

HAT the Hartree and Hartree-Fock equations are
the same for the ground-state orbital of helium is
a commonplace among atomic physicists. At the risk of
being considered pedantic, we contend that the Hartree
and Hartree-Fock equations for the ground-state orbital
of helium are not the same; they merely have a common
ground-state solution. The temptation to dispense with
the exchange operator of the Hartree-Fock Hamiltonian
and use the far simpler Hartree Hamiltonian in applica-
tions involving the ground state of helium has proven
irresistible.

As we shall see, the form of the Hamiltonian can be
all-important. In a variation-perturbation calculation
of the first-order wave function for the ground state of
helium, Weiss and Martin! (WM) ostensibly use the
Hartree-Fock model Hamiltonian. In the actual calcu-
lation, WM use the Hartree rather than the Hartree-
Fock operator. We shall show that the equation ob-
tained for the first-order function in the perturbation
expansion of the ground-state function of helium using a
Hartree model Hamiltonian and the corresponding
equation obtained using a Hartree-I'ock model Hamil-
tonian have no common solution.

II. THE PERTURBATION EXPANSION

The nonrelativistic Hamiltonian for the helium iso-
electronic sequence is given by

VA Z 1
JC=—3V:" §Vai——+ ®
. . . £} r2 T2
in atomic units.
We define Coulomb and exchange operators,
respectively,
|$(2)]?
Je(1)8(1)= 0(1)/dr=—- (2a)
¢*(2)6(2)
K4 (1)6(1)=¢(1) / dra——(—(—- (2b)

* Su portcd by the Lockheed Missiles & Space Com any
througg the Independent Research Program and Dy the Nahona
Acronautics and Space Administration through’ iéontract NAS

7382,
T Presented at the Alberta Symposium on Quantum Chemistry,

Umvemty of Alberta, Edmonton, August 1965
A. W, Weiss and J. B. Martin, Phys. Rev. 132 2118 (1963).
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The Hartree and IHartree-Fock equations for the
ground-state orbital of helium are, respectively,

Z
11"(1)¢(1)=[-‘Vx’—’—+J¢(1)]¢(1)=n¢(1), (30)

U™ (1)(1)

VA
=[—-‘;V1’—-—+21¢(1)— /\’a.(l)]dr(l) =n¢(1), (3h)

1

where 7 is the orbital encrgy.

We may rewrite the Hamiltonian of the system so as
to give either a Hartree or Ilartree-Fock model Hamil-
tonian as follows:

go=IM(1) 4 1I(2)+ V¥(1,2), (4a)
V"=(1/7‘u)—f¢(1)—]¢(2); (4b)

or
3C=IINF(1)+ IIHF(2)+ VHIE(1,2), (5a)
VHF= (1/r5)— 27 4(1)+ K4(1)— 27 5(2)+ K 4(2). (5b)

The ground-state wave function for the helium atom
is given by the product

where we have suppressed the antisymmetric spin func-
tion and ¥, is a solution of

CHE(1)+HE(2)Jo(1,2)
=[HEF(1)+HTF(2) Wo(1,2) =2m¥0(1,2) . (6)

We now let

H=I"(1)+H%(2), (7a)
V=VH, (7b)
or
H=H"F(1)+H77(2), (8a)
V= yuF (8b)

and develop the standard perturbation expansions.
Let

(92)
(9b)

V=yot+¥1+¥at--,
Emetagteatet -,



PERTURBATION EXPANSION

where ¥,'s are solutions of the equations

(H— e)¥1= exbo—Via, (10a)
0/ o to)%f abot a1~ Vi, (10b)
" and the energies are given by
€@=2y, (11a)
a= (¥l V|¥o), (11b)
(11c)

a=(o| Vi),

We have assumed (o|¢1)=0in Egs. (11).

III. FIRST-ORDER EQUATIONS

Let us assume the solutions to Eq. (10a) are the same

S FOR GROUND STATE OF He

Taking the difference of Eqs. (12), we have

i(1.2) { / ld’fi)lz""’ + / I¢::)l’",ﬂ}

*(3Wa(3,2) . *(3)a(1,3
—a(1) / FONGD 2 / O, o
r13 r2

. (14)

We wish to show that any continuous, symmetric,
square-integrable solution of this equation is of the form

v¥1(1,2)=ag(1)$(2), (15)

where a is a constant. The argument is then completed
by showing that a solution of this form is not an
acceptable solution to one of Eqs. (12).

Equation (14) may be written in operator form as

for the two model Hamiltonians. We can then write the £:(1,2)=0, (16)
two equations in the form where £ is defined by
[+ I D= o= 6Vo=Via,  (122) [$EWA(1.D= (1 (32)]
£¢/1(1,2)=/¢*(3) u’T]
[IIBF (1) JIRF(2)— eo W1 = & TFo— VEFY,,  (12b) i3
The right-hand sides are identical, since [6(3¥a(1,2)—d(2Wa(1,3)]
+[ow drs. (1)
VH¢°= yu F'l’o (13) 23
and
a= (o V). Now the inner product
#(3)12|¥1(1,2) | 2—¢* (31 *(1,2) p(1)¥1(3,2)
(¢ll£¢l)=/// | | id | - . i ! dridrydr;
3
3|2 1,2) | 2—¢* (31 *(1,2)9(2 1,3
+/// [(3)]2]¥1(1,2) |2~ ¢* (31 *(1,2)$(2)n( )Jﬂd‘rz(lfa (18)

=% /’ /’ /‘ [#(3)¥1(1,2)

as may be verified by expanding the right-hand side
and using symmetry.
Hence

W1l £¢1)2>0

=0 if, and only if, both expressions in abso-
lute signs, vanish almost evérywhere. (20)
Since we assume ¢ and ¥, are continuous functions, the

expressions in absolute signs will vanish almost every-
where only if they vanish identically, i.e., only if

2(3A(1,2)=¢(1)11(3,2),

¢(3W1(1,2)=¢(2n(1,3). (21b)

Let 8 denote a point such that ¢(8)>0. Then from
the first of these two identities we have

¥a(1,2) = [¥1(8,2)/(8) Jo(1) .

i3

(21a)
and

(22a)

—s((3,2)]* 1 |6(3)¢a(1,2)
uT;dT:dT;‘l"E ///

r23

—o(201(1,3)]2
#D(13)] dridrydr;, (19)

r

From the second we have

¥1(8,2)=[¥1(6,8)/¢(8)16(2) , (22b)
and combining
¥1(1,2)=[¥1(8,8)/9*(8) Jo(1)6(2)
=ag(1)¢(2). (23)

Hence, the first part of the argument is completed:
LY1=0= (Y| L¥1)=0=y1(1,2) =ag(1)$(2).

Substituting this solution of Eq. (14) into Eq. (12a),

we find

(VE—ea)yo=0 (24)

and, since y7#0, this implies

1 3)|2 3)|2
L LT
11 a n

sh
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an obvious absurdity. Thus, the argument is com-
pleted. The only solution of Eq. (14) is not a solution of
Eq. (12a) and thus Egs. (12a) and (12b) have no
common solution.

IV. DISCUSSION

WM characterize their results for the energy of helium
through third order as “somewhat discouraging” and
a number of physicists have taken the WM calculation
to indicate that the Hartree-Fock approximation is a
poor zeroth-order approximation for perturbation
theory. We have shown, on the contrary, that no con-
clusion may be drawn about the Hartree-Fock approxi-

NASA-Langley, 1966 CR=-583 >

mation on the basis of the WM paper. WM used the
Hartree, rather than the Iartree-Fock, approximation
and our proof in Sec. III indicates that the first-order
functions for the two models are difierent.
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